Enumerating Hopf-Galois Structures on Dihedral Extensions

Timothy Kohl

Boston University
May 27, 2019

Hopf-Galois Theory

An extension K / k is Hopf-Galois if there is a k-Hopf algebra H and a k-algebra homomorphism $\mu: H \rightarrow \operatorname{End}_{k}(K)$ such that

- $\mu(a b)=\sum_{(h)} \mu\left(h_{(1)}(a) \mu\left(h_{(2)}\right)(b)\right.$
- $K^{H}=\{a \in K \mid \mu(h)(a)=\epsilon(h) a \forall h \in H\}=k$
- μ induces $I \otimes \mu: K \# H \xrightarrow{\cong} \operatorname{End}_{k}(K)$

By the Greither-Pareigis theorem, for K / k a Galois extension of fields with $G=G a l(K / k)$ the Hopf algebras which act are of the form $(K[N])^{G}$ where $N \leq B=\operatorname{Perm}(G)$ is a regular subgroup normalized by $\lambda(G) \leq B$.

The enumeration therefore is of those regular $N \leq B$, where N must have the same cardinality as G but need not be isomorphic.

To organize any such enumeration we define:

$$
\begin{aligned}
R(G) & =\left\{N \leq B \mid N \text { regular and } \lambda(G) \leq \operatorname{Norm}_{B}(N)\right\} \\
R(G,[M]) & =\{N \in R(G) \mid N \cong M\}
\end{aligned}
$$

where $[M]$ denotes an isomorphism class of a group of order $|G|$.
We will be considering $R(G,[G])$ for G a dihedral group.

The general setup will be as follows. We assume that L / K is Galois with group $G=D_{n}$ and so $B=\operatorname{Perm}(G)$ where D_{n} may be presented as

$$
\begin{aligned}
D_{n} & =\left\{x, t \mid x^{n}=1, t^{2}=1, x t=t x^{-1}\right\} \\
& =\left\{1, x, x^{2}, \ldots, x^{n-1}, t, t x, t x^{2}, \ldots, t x^{n-1}\right\}
\end{aligned}
$$

where $\left|D_{n}\right|=2 n$, for $n \geq 3$.

Note, for N a regular subgroup of B one has

$$
\operatorname{Norm}_{B}(N) \cong \operatorname{Hol}(N) \cong N \rtimes \operatorname{Aut}(N)
$$

and since $N \in R\left(D_{n},\left[D_{n}\right]\right)$ we begin with a number of observations about D_{n} and its holomorph.

Proposition

For $n \geq 3$ with $D_{n}=\left\{t^{a} x^{b} \mid a \in \mathbb{Z}_{2} ; b \in \mathbb{Z}_{n}\right\}$ and letting $U_{n}=\mathbb{Z}_{n}^{*}$
(a) $C=\langle x\rangle$ is a characteristic subgroup of D_{n}
(b) $\operatorname{Aut}\left(D_{n}\right)=\left\{\phi_{i, j} \mid i \in \mathbb{Z}_{n} ; j \in U_{n}\right\}$ where

$$
\begin{aligned}
\phi_{i, j}\left(t^{a} x^{b}\right) & =t^{a} x^{i a+j b} \\
\phi_{i_{2}, j_{2}} \circ \phi_{i_{1}, j_{1}} & =\phi_{i_{2}+j_{2} i_{1}, j_{2} j_{1}}
\end{aligned}
$$

(c) $\operatorname{Aut}\left(D_{n}\right) \cong \operatorname{Hol}\left(\mathbb{Z}_{n}\right)$

In order to organize the enumeration of the $N \in R(G,[G])$ we consider some global structural information about how a regular subgroup isomorphic to D_{n} acts on the elements of D_{n} viewed as a set.

Wreath Products and Blocks

Definition

If G is a permutation group acting on a set Z then a block for G is a subset $X \subseteq Z$ such that for $g \in G, X^{g}=X$ or $X^{g} \cap X=\emptyset$. In our example, we shall consider Z as the underlying set of $G=D_{n}$ and look at blocks arising from subgroups of
$B=\operatorname{Perm}(G)$ and in particular how regularity ties in with these block structures. Recalling our presentation of D_{n} define :

$$
\begin{aligned}
& X=\left\{1, x, x^{2}, \ldots, x^{n-1}\right\} \\
& Y=\left\{t, t x, t x^{2}, \ldots, t x^{n-1}\right\} \\
& Z=X \cup Y
\end{aligned}
$$

where $Z=G$ (as sets) and $B \cong \operatorname{Perm}(Z)$.

Next, define $\tau_{*}: X \rightarrow Y$ by $\tau_{*}\left(x^{j}\right)=t x^{j}$ which induces an isomorphism $\operatorname{Perm}(X) \rightarrow \operatorname{Perm}(Y)$

From here on, we set $B_{X}=\operatorname{Perm}(X)$ and $B_{Y}=\operatorname{Perm}(Y)$ and consider

$$
W(X, Y)=\left(B_{X} \times B_{Y}\right) \rtimes\langle\tau\rangle
$$

where τ has order 2 and is defined as follows:

$$
\begin{aligned}
& \tau(\beta)(x)=\tau_{*}^{-1}\left(\beta\left(\tau_{*}(x)\right)\right) \text { for } x \in X \text { and } \beta \in B_{Y} \\
& \tau(\alpha)(y)=\tau_{*}\left(\alpha\left(\tau_{*}^{-1}(y)\right)\right) \text { for } y \in Y \text { and } \alpha \in B_{X}
\end{aligned}
$$

As $B_{X} \cong B_{Y} \cong S_{n}$ and $\langle\tau\rangle \cong S_{2}$ we find that

$$
W(X, Y) \cong S_{n} \backslash S_{2}
$$

the wreath product of S_{n} and S_{2}.

Note: As an element of B,

$$
\begin{aligned}
\tau & =(1, t)(x, t x) \ldots\left(x^{n-1}, t x^{n-1}\right) \\
& =\lambda(t)
\end{aligned}
$$

Define a map $\delta: W(X, Y) \rightarrow B=\operatorname{Perm}(Z)$ by

$$
\delta\left(\alpha, \beta, \tau^{k}\right)(z)=\left\{\begin{array}{l}
\beta\left(\tau_{*}(z)\right), k=1, \quad z \in X \\
\alpha(z), k=0, z \in X \\
\alpha\left(\tau_{*}^{-1}(z)\right), k=1, \quad z \in Y \\
\beta(z), k=0, \quad z \in Y
\end{array}\right.
$$

It is readily verified that δ is an embedding of $W(X, Y)$ as a subgroup of B.

We need to make a number of observations about wreath products such as $W(X, Y)$ which are probably known but for which no convenient reference could be found.

Lemma
If $w \in W(X, Y)$ then either $w(X)=X$ and $w(Y)=Y$ or
$w(X)=Y$ and $w(Y)=X$.
As such, we may regard $W(X, Y)$ as the maximal subgroup of B for which X is a block.

Although we shall use the above indicated choice of τ_{*}, it is useful to observe the following.

Proposition
For any two bijections τ_{*} and τ_{*}^{\prime} of X to Y, the induced wreath products W and W^{\prime} are equal as subgroups of B.

Definition

For Z such that $|Z|=2 n$, a splitting $\{X, Y\}$ of Z is a partition of Z into two equal size subsets.

We note that for a given splitting $\{X, Y\}$ of Z every bijection $\tau_{*}: X \rightarrow Y$ yields the same subgroup of B which we may denote $W\left(X, Y ; \tau_{*}\right)$ or simply $W(X, Y)$.

Also, for later use, we note the following:

Proposition

For a given splitting $\{X, Y\}$ and $\sigma \in B$, we have $\sigma W(X, Y) \sigma^{-1}=W\left(X^{\sigma}, Y^{\sigma}\right)$ where $X^{\sigma}=\sigma(X)$ and $Y^{\sigma}=\sigma(Y)$.

Corollary

$\operatorname{Norm}_{B}(W(X, Y))=W(X, Y)$
As a small aside, we can consider, for a given $\{X, Y\}$ the subgroup $S(X, Y)=B_{X} \times B_{Y}$ of B.
Proposition
$S(X, Y) \triangleleft W(X, Y)$ and, in fact, $\operatorname{Norm}_{B}(S(X, Y))=W(X, Y)$.
Note, $W(X, Y)=S(X, Y) \cup S(X, Y) \tau$ for any τ induced by $\tau_{*}: X \rightarrow Y$.

Before considering the enumeration of $R(G)$ we shall first consider how regularity and block structure are connected.

Proposition
If $N \leq B$ is regular then $N \leq W(X, Y)$ if and only if N contains an index 2 subgroup K with $X=K_{G}$. (assuming $e_{G} \in X$)

The K's which arise are of course normal, but we need the following fact about the normalizers of regular subgroups N.

Proposition
If $N \leq B$ is regular and $N \leq W(X, Y)$ corresponding to $K \leq N$ as above, then $\operatorname{Norm}_{B}(N) \leq W(X, Y)$ if and only if K is a characteristic subgroup of N.

Corollary
If $N \leq B$ is regular and $N \leq W(X, Y)$ corresponding to $K \leq N$ as above, and K is unique, then $\operatorname{Norm}_{B}(N) \leq W(X, Y)$ for the splitting $\{X, Y\}$ corresponding to K only.

Proof.

The bijection $b: N \rightarrow G$ (given by $b(n)=n e_{G}$) induces an isomorphism $\phi: \operatorname{Perm}(G) \rightarrow \operatorname{Perm}(N)$ and if $X=K e_{G}$, then $b(X)=K e_{N}=K=\tilde{X}$, and similarly $\tilde{Z}=N$ and $\tilde{Y}=\tilde{Z}-\tilde{X}$. In $\operatorname{Perm}(N)$ we have $\phi(K)=\lambda(K) \leq \lambda(N)=\phi(N)$ corresponding to $\tilde{X}=K$. Now, $\operatorname{Hol}(N)=\operatorname{Norm}_{\operatorname{Perm}(N)}(N)=\rho(N) \operatorname{Aut}(N)$ and so for $\eta \in \operatorname{Hol}(N)$ we have $\eta=\rho(m) \alpha$ for $m \in N$ and $\alpha \in \operatorname{Aut}(N)$ and so if K is characteristic then

$$
\begin{aligned}
\eta(\tilde{X}) & =\rho(m) \alpha(K) \\
& =K m^{-1} \\
& =K \text { or } N-K(i . e . \tilde{X} \text { or } \tilde{Y})
\end{aligned}
$$

For the converse observe that $N=K \cup n K$ (for some $n \notin K$) and so for $\alpha \in \operatorname{Aut}(N) \leq \operatorname{Norm}_{B}(N)$ we have $\alpha(K)=K$ or nK which, of course, means $\alpha(K)=K$, so, in fact, $\operatorname{Norm}_{B}(N) \leq W(X, Y)$ implies $\operatorname{Aut}(N) \leq S(X, Y)=B_{X} \times B_{Y}$.

The block/splitting structure of $\lambda(G)$ for $G=D_{n}$ is as follows.
Proposition
Given $G=D_{n}$ as presented above, then:
(a) If n is odd, then $\lambda(G) \leq W\left(X_{0}, Y_{0}\right)$ for exactly one $\left\{X_{0}, Y_{0}\right\}$.
(b) If n is even then $\lambda(G) \leq W\left(X_{i}, Y_{i}\right)$ for exactly three $\left\{X_{i}, Y_{i}\right\}$

Proof

The underlying set is $\left\{1, x, \ldots, x^{n-1}, t, t x, \ldots, t x^{n-1}\right\}$ and

$$
\lambda(x)=\left(1 x \cdots x^{n-1}\right)\left(t t x^{n-1} \ldots t x\right)
$$

and

$$
\lambda(t)=(1 t)(x t x) \cdots\left(x^{n-1} t x^{n-1}\right)
$$

For n odd, the claim is that there is exactly one block of size n (equivalently only one splitting yielding a wreath product containing G), namely

$$
X_{0}=\left\{1, x, \ldots, x^{n-1}\right\} \text { and } Y_{0}=\left\{t, t x, \ldots, t x^{n-1}\right\}
$$

which corresponds to the unique index 2 subgroup $K_{0}=\langle\lambda(x)\rangle$ where $X_{0}=\operatorname{Orb}_{\langle\lambda(x)\rangle}(1)$.

For n even, we have the following two additional splittings:

$$
\begin{aligned}
& X_{1}=\left\{1, x^{2}, \ldots, x^{n-2}, t, t x^{2}, \ldots, t x^{n-2}\right\} \\
& Y_{1}=\left\{x, x^{3}, \ldots, x^{n-1}, t x, t x^{3}, \ldots, t x^{n-1}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& X_{2}=\left\{1, x^{2}, \ldots, x^{n-2}, t x, t x^{3}, \ldots, t x^{n-1}\right\} \\
& Y_{2}=\left\{x, x^{3}, \ldots, x^{n-1}, t, t x^{2}, \ldots, t x^{n-2}\right\}
\end{aligned}
$$

which correspond to the additional index 2 subgroups $K_{1}=\left\langle\lambda\left(x^{2}\right), \lambda(t)\right\rangle$ and $K_{2}=\left\langle\lambda\left(x^{2}\right), \lambda\left(t x^{n-1}\right)\right\rangle$

However, only K_{0} is ever characteristic.

Corollary

For all n, if $G=D_{n}$ then $\mathrm{Hol}(G) \leq W\left(X_{0}, Y_{0}\right)$ for a unique $\left\{X_{0}, Y_{0}\right\}$.
i.e. For n even, $\lambda(G)$ is contained in $W\left(X_{i}, Y_{i}\right)$ for $i=0,1,2$, but the holomorph is only contained in $W\left(X_{0}, Y_{0}\right)$.

Now, as far as the membership of $R\left(D_{n},\left[D_{n}\right]\right)$ is concerned, we have the following.

Theorem

Let $N \in R\left(D_{n},\left[D_{n}\right]\right)$ with K the characteristic index 2 subgroup of N and $X=K \cdot 1$ (with $Y=Z-X)$.
(a) If n is odd then $X=X_{0}$.
(b) If n is even then $X=X_{i}$ for either $i=0,1$, or 2 .

Part (a) is a consequence of the fact that $\lambda(G) \leq W\left(X_{0}, Y_{0}\right)$ uniquely so that $\lambda(G) \leq \operatorname{Norm}_{B}(N) \leq W(X, Y)$ implies $X=X_{0}$.

Part (b) is a consequence of the fact that $\operatorname{Norm}_{B}(N) \leq W(X, Y)$ and $\lambda(G) \leq W\left(X_{i}, Y_{i}\right)$ for $i=0,1,2$ so that X must be X_{i} for exactly one such i.

The splitting corresponding to the index 2 characteristic subgroup K of any $N \in R\left(D_{n},\left[D_{n}\right]\right)$ is sufficient to actually determine N itself.

To see this, we start by considering the subgroup $K_{0}=\langle\lambda(x)\rangle \leq \lambda\left(D_{n}\right)$
Proposition
[1, Prop. 2.6] Given $G=D_{n}$ as presented above, with $K_{0}=\lambda(\langle x\rangle) \leq \lambda(G), \operatorname{Norm}_{B}\left(K_{0}\right)=\operatorname{Norm}_{B}(\lambda(G))=\operatorname{Hol}(G)$.

What we have in general is that if $N \cong D_{n}$ is regular and K its index 2 characteristic subgroup then $\operatorname{Norm}_{B}(N)=\operatorname{Norm}_{B}(K)$.

Theorem
For $G=D_{n}$, if $G \cong N \leq B$ is regular with $K \leq N$ the index 2 characteristic subgroup then $\lambda(G)$ normalizes N iff and only if $\lambda(G)$ normalizes K.

The advantage of this is that, if K is generated by $k_{X} k_{Y}$ (a product of two disjoint n-cycles) where $1 \in \operatorname{Supp}\left(k_{X}\right)$ we can focus on how it is acted on by $\lambda(x)$ and $\lambda(t)$, starting with the fact that $\operatorname{Orb}_{\langle k x\rangle}(1)=X_{i}$ for $i=0,1$, or 2 as indicated above.

Moreover, we need not worry about the order 2 generator of N. Why?

Proposition

If $k_{X} k_{Y}$ is product of two disjoint n-cycles, then $K=\left\langle k_{X} k_{Y}\right\rangle$ is the index 2 characteristic subgroup of exactly one regular subgroup $N \leq B$ where $N \cong D_{n}$.
(Why?) Since τ has order 2, it must be a product of n disjoint transpositions by regularity.

We claim that $\tau(X)=Y$ and $\tau(Y)=X$.
If n is odd then $\tau(X)=X$ and $\tau(Y)=Y$ is clearly impossible since one of the transpositions would have to contain an element of X and one from Y which would contradict $\tau(X)=X$.

If n is even then one could have $n / 2$ transpositions with elements from X and $n / 2$ transpositions with elements from Y, but what would happen is that the resulting group $\left\langle k_{x} k_{y}, \tau\right\rangle$ would have fixed points.

For example, if $k_{X}=(1,2,3,4)$ and $k_{Y}=(5,6,7,8)$ and $\tau=(1,4)(2,3)(5,8)(6,7)$ then $\tau k_{X} \tau^{-1}=k_{X}^{-1}$ and $\tau k_{Y} \tau^{-1}=k_{Y}^{-1}$ so that $\left\langle k_{x} k_{y}, \tau\right\rangle \cong D_{4}$ but this group is not fixed point free, e.g.

$$
(1,2,3,4)(5,6,7,8)(1,4)(2,3)(5,8)(6,7)=(2,4)(6,8)
$$

In contrast $\langle(1,2,3,4)(5,6,7,8),(1,8)(2,7)(3,6)(4,5)\rangle$ is also isomorphic to D_{4} but is regular too.

As such τ is a product of disjoint transpositions where each transposition contains one element from X and one from Y.

Specifically if $k_{X}=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ and $k_{Y}=\left(z_{1}^{\prime}, z_{2}^{\prime}, \ldots z_{n}^{\prime}\right)$ (whence $\left.k_{Y}^{-1}=\left(z_{n}^{\prime}, z_{n-1}^{\prime}, \ldots, z_{2}^{\prime}, z_{1}^{\prime}\right)\right)$ then the only possibilities for τ are

$$
\begin{aligned}
& \left(z_{1}, z_{n}^{\prime}\right)\left(z_{2}, z_{n-1}^{\prime}\right)\left(z_{3}, z_{n-2}^{\prime}\right) \cdots\left(z_{n}, z_{1}^{\prime}\right) \\
& \left(z_{1}, z_{n-1}^{\prime}\right)\left(z_{2}, z_{n-2}^{\prime}\right)\left(z_{3}, z_{n-3}^{\prime}\right) \cdots\left(z_{n}, z_{n}^{\prime}\right) \\
& \left(z_{1}, z_{n-2}^{\prime}\right)\left(z_{2}, z_{n-3}^{\prime}\right)\left(z_{3}, z_{n-4}^{\prime}\right) \cdots\left(z_{n}, z_{n-1}^{\prime}\right) \\
& \vdots \\
& \left(z_{1}, z_{1}^{\prime}\right)\left(z_{2}, z_{n}^{\prime}\right)\left(z_{3}, z_{n-1}^{\prime}\right) \cdots\left(z_{n}, z_{2}^{\prime}\right)
\end{aligned}
$$

where each (together with $k_{X} k_{y}$) generate the same group.

As such, the enumeration of $N \in R\left(D_{n},\left[D_{n}\right]\right)$ is equivalent to the characterization of $K \leq N$ the (cyclic) characteristic subgroup of index 2.

We divide the analysis between the case where n is odd, versus when n is even.

Also integral to the determination of $|R(G,[G])|$ is the notion of the multiple holomorph of a group.

Briefly, the collection

$$
\mathcal{H}(G)=\{\operatorname{regular} N \leq \operatorname{Hol}(G) \mid N \cong G \text { and } \operatorname{Hol}(N)=\operatorname{Hol}(G)\}
$$

is exactly parameterized by $\tau \in T(G)=\operatorname{Norm}_{B}(\mathrm{Hol}(G)) / \mathrm{Hol}(G)$ the multiple holmorph of G.
i.e.

$$
\mathcal{H}(G)=\left\{\tau \lambda(G) \tau^{-1} \mid \tau \in T(G)\right\}
$$

And since $\lambda(G) \leq \operatorname{Hol}(G)=\operatorname{Hol}(N)$ it is quite clear that $\mathcal{H}(G) \subseteq R(G,[G])$.

And for D_{n} we have the following
Theorem
[1, Thm. 2.11] For $G=D_{n}$ we have:

$$
\left|\mathcal{H}\left(D_{n}\right)\right|=\left|T\left(D_{n}\right)\right|=\left|\Upsilon_{n}\right|
$$

where $\Upsilon_{n}=\left\{u \in U_{n} \mid u^{2}=1\right\}$ the units of exponent $2 \bmod n$.

What we wish to show is the following:
Theorem
For $G=D_{n}$ we have that $|R(G,[G])|$ equals
(a) $\left|\Upsilon_{n}\right|$ if n is odd, where all $\operatorname{Norm}_{B}(N) \leq W\left(X_{0}, Y_{0}\right)$
(b) $\mu_{n}\left|\Upsilon_{n}\right|$ for n even, for $\operatorname{Norm}_{B}(N) \leq W\left(X_{0}, Y_{0}\right)$ where

$$
\mu_{n}=\left|\left\{v \in \Upsilon_{n} \mid \operatorname{gcd}(v+1, n)=2\right\}\right|
$$

(c) $\frac{\frac{n}{2} \cdot\left|\Upsilon_{n}\right| \cdot \phi\left(\frac{n}{2}\right)}{\phi(n)}$ for n even, for $\operatorname{Norm}_{B}(N) \leq W\left(X_{i}, Y_{i}\right)$ for $i=1,2$
[Note: If $8 \mid n$ then $\mu_{n}=2$ otherwise $\mu_{n}=1$.]

We start by considering those $N \in R(G,[G])$ for which $\operatorname{Norm}_{B}(N) \leq W\left(X_{0}, Y_{0}\right)$ where

$$
\begin{aligned}
& X_{0}=\left\{1, x, \ldots, x^{n-1}\right\} \\
& Y_{0}=\left\{t, t x, \ldots, t x^{n-1}\right\}
\end{aligned}
$$

and we recall that this is true automatically if n is odd.
In this case, if $K \leq N$ is the (unique) subgroup of index 2, we have $K=\langle k\rangle=\left\langle k_{X} k_{Y}\right\rangle$ where $\operatorname{Supp}\left(k_{X}\right)=X_{0}$ and $\operatorname{Supp}\left(k_{Y}\right)=Y_{0}$.

Since $\operatorname{Supp}\left(k_{X}\right)=X_{0}$ and $\operatorname{Supp}\left(k_{Y}\right)=Y_{0}$ then $k_{X}\left(x^{i}\right)=x^{k x(i)}$ and $k_{Y}\left(t x^{j}\right)=t x^{k_{Y}(j)}$ so we may, for convenience, identify

$$
\begin{aligned}
& k_{X}=\left(x^{i_{0}}, x^{i_{1}}, \ldots, x^{i_{n-1}}\right)=\left(i_{0}, i_{1}, \ldots, i_{n-1}\right) \\
& k_{Y}=\left(t x^{j_{0}}, t x^{j_{1}}, \ldots, t x^{j_{n-1}}\right)=\left(j_{0}, j_{1}, \ldots, j_{n-1}\right)
\end{aligned}
$$

The question is, what are the possibilities for these two n-cycles?
We begin by using the fact that N (whence K) is normalized by $\lambda\left(D_{n}\right)$ so in particular by $\lambda(t)$ and $\lambda(x)$.

We have

$$
\begin{aligned}
\lambda(x) k \lambda(x)^{-1}\left(x^{i}\right) & =\lambda(x) k\left(x^{i-1}\right) \\
& =\lambda(x)\left(x^{k_{x}(i-1)}\right) \\
& =x^{k_{x}(i-1)+1}
\end{aligned}
$$

and

$$
\begin{aligned}
\lambda(x) k \lambda(x)^{-1}\left(t x^{j}\right) & =\lambda(x) k\left(x^{j+1}\right) \\
& =\lambda(x)\left(t x^{k y(j+1)}\right) \\
& =t x^{k y(j+1)-1}
\end{aligned}
$$

where $\lambda(x) k \lambda(x)^{-1}=k^{v}=k_{X}^{v} k_{Y}^{v}$ for some $v \in U_{n}$ where $v^{n}=1$.

So under the identification

$$
\begin{aligned}
k_{X} & =\left(i_{0}, i_{1}, \ldots, i_{n-1}\right) \\
k_{Y} & =\left(j_{0}, j_{1}, \ldots, j_{n-1}\right) \\
i_{0} & =0 \quad j_{0}=0
\end{aligned}
$$

we have $k_{X}^{v}=\left(i_{0}, i_{v}, \ldots, i_{(n-1) v}\right)$ and $k_{Y}^{v}=\left(j_{0}, j_{v}, \ldots, j_{(n-1) v}\right)$ and therefore:

$$
\begin{aligned}
& k_{X}\left(i_{a}-1\right)=i_{a+v}-1 \\
& k_{Y}\left(j_{b}+1\right)=j_{b+v}+1
\end{aligned}
$$

If we assume $i_{r v}=1$ for some r then we have

$$
k_{X}\left(i_{r v}-1\right)=k_{X}(0)=k_{X}\left(i_{0}\right)=i_{(r+1) v}-1=i_{1}
$$

but then

$$
\begin{aligned}
& k_{X}\left(i_{1}\right)=k_{X}\left(i_{(r+1) v}-1\right)=i_{(r+2) \vee}-1=i_{2} \\
& k_{X}\left(i_{2}\right)=k_{X}\left(i_{(r+2) \vee}-1\right)=i_{(r+3)_{v}-1}=i_{3}
\end{aligned}
$$

which implies that $i_{(r+e)_{v}}-i_{e}=1$ for each $e \in \mathbb{Z}_{n}$.

Similarly, for some s, we have $j_{s v}+1=j_{0}=0$ (i.e. $j_{s v}=-1$) and so a similar inductive argument shows that

$$
j_{(s+e)_{v}}-j_{e}=-1=n-1
$$

for each $e \in \mathbb{Z}_{n}$.

Normalization by $\lambda(t)$ yields

$$
\begin{aligned}
\lambda(t) k \lambda(t)^{-1}\left(x^{i}\right) & =\lambda(t) k\left(t x^{i}\right) \\
& =\lambda(t)\left(t x^{k_{\gamma}(i)}\right) \\
& =x^{k_{Y}(i)}
\end{aligned}
$$

and

$$
\begin{aligned}
\lambda(t) k \lambda(t)^{-1}\left(t x^{j}\right) & =\lambda(t) k\left(x^{j}\right) \\
& =\lambda(t)\left(x^{k x(j)}\right) \\
& =t x^{k x}(j)
\end{aligned}
$$

where $\lambda(t) k \lambda(t)^{-1}=k^{u}=k_{X}^{u} k_{Y}^{u}$ for some $u \in U_{n}$ where $u^{2}=1$.

What this implies is that $x^{i_{e+u}}=k_{X}^{\mu}\left(x^{i_{e}}\right)=x^{k_{Y}\left(i_{e}\right)}$, and if we again focus on the exponents we get

$$
i_{e+u}=k_{X}^{u}\left(i_{e}\right)=k_{Y}\left(i_{e}\right)
$$

so we can consider what happens with $e=0,1, \ldots$ (recalling that $i_{0}=j_{0}=0$ and that $\left.k_{Y}\left(j_{f}\right)=j_{f+1}\right)$ then we get

$$
\begin{aligned}
i_{u} & =k_{Y}\left(i_{0}\right)=k_{Y}\left(j_{0}\right)=j_{1} \\
i_{2 u} & =k_{Y}\left(i_{u}\right)=k_{Y}\left(j_{1}\right)=j_{2} \\
i_{3 u} & =k_{Y}\left(i_{2 u}\right)=k_{Y}\left(j_{2}\right)=j_{3}
\end{aligned}
$$

namely $j_{f}=i_{u f}$ for each $f \in \mathbb{Z}_{n}$, and since $u^{2}=1$ we can write this as $j_{u f}=i_{f}$ too.

So to summarize so far, we have n-cycles $\left(i_{0}, \ldots, i_{n-1}\right)$ and $\left(j_{0}, \ldots, j_{n-1}\right)$ where the $i^{\prime} s$ and $j^{\prime} s$ satisfy the following relations

$$
\begin{aligned}
i_{0} & =0 \\
j_{0} & =0 \\
i_{r v} & =1 \text { for some } r \\
j_{s v} & =-1 \text { for some } s \\
i_{(r+e) v}-i_{e} & =1 \text { for each } e \in \mathbb{Z}_{n} \\
j_{(s+e) v}-j_{e} & =-1 \text { for each } e \in \mathbb{Z}_{n} \\
j_{g} & =i_{u g} \text { for each } g \in \mathbb{Z}_{n}
\end{aligned}
$$

where $u^{2}=1$ and $v^{n}=1$.
So the question is what are the solutions of this system of equations, as these determine the possibilities for $k=k_{X} k_{Y}$.

Simplification (1): The relation $i_{u g}=j_{g}$ implies that the values of j_{g} are completely determined by i_{g} for $g \in \mathbb{Z}_{n}$ since u is a unit. Simplification (2): We can show that, in fact, $r, s \in U_{n}$.

Why are $r, s \in U_{n}$?
If $r \notin U_{n}$ then for some $m<n$ we have $m r \equiv 0(\bmod n)$.
From the relation $i_{(r+e) v}-i_{e}=1$ we have

$$
\begin{aligned}
i_{r v}-i_{0} & =1[e=0] \\
i_{2 r v}-i_{r v} & =1[e=r] \\
i_{3 r v}-i_{2 r v} & =1[e=2 r] \\
\vdots & \\
i_{m r v}-i_{(m-1) r v} & =1[e=(m-1) r]
\end{aligned}
$$

Looking at the left and right hand sides, we see that the indices $\{0, r v, \ldots,(m-1) r v\}$ and $\{0, r, \ldots,(m-1) r\}$ are equal since $v \in U_{n}$.

As such, if we add these m equations we get

$$
0=\left(\sum_{e=0}^{m-1} i_{e r v}\right)-\left(\sum_{f=0}^{m-1} i_{f r}\right)=m
$$

in \mathbb{Z}_{n} which is impossible since $m<n$.
So we conlude that in fact $r \in U_{n}$ and similarly $s \in U_{n}$ as well.

The next task is to determine $v \in U_{n}$, which (at the very least) must satisfy the equation $v^{n}=1$.

From $i_{(r+e) v}-i_{e}=1, i_{0}=0, i_{r v}=1$ we obtain

$$
\begin{aligned}
i_{r v+r v^{2}}-i_{r v} & \left.=1 \text { [i.e. } i_{r v+r v^{2}}=2\right] \\
i_{r v+r v^{2}+r v^{3}}-i_{r v+r v^{2}} & \left.=1 \text { [i.e. } i_{r v+r v^{2}+r v^{3}}=3\right] \\
\vdots & \\
i_{r v+r v^{2}+\cdots+r v^{e}} & =e
\end{aligned}
$$

We can now use this relation as follows:

$$
\begin{aligned}
r v & =u\left(s v+\cdots+s v^{n-1}\right) \text { i.e. }[e=1] \\
r v+r v^{2} & =u\left(s v+\cdots+s v^{n-2}\right) \text { i.e. }[e=2]
\end{aligned}
$$

which implies $r=-u s v^{n-3}$, and for $e=3$ we have

$$
r v+r v^{2}+r v^{3}=u\left(s v+\cdots+s v^{n-3}\right)
$$

which paired with the $e=2$ case yields $r=-u s v^{n-5}$ which ultimately implies $v^{2}=1$.

Now, if n is odd then $v^{n}=1$ together with $v^{2}=1$ immediately implies that $v=1$.

If n is even then we can use the $v^{2}=1$ relation as follows.
If in $i_{r v+r v^{2}+\cdots+r v^{e}}=e$ we look at the index $r v+r v^{2}+\cdots+r v^{e}$ we have

$$
r v+r v^{2}+\cdots+r v^{e}= \begin{cases}f r(v+1) & \text { if } e=2 f \\ f r(v+1)+r v & \text { if } e=2 f+1\end{cases}
$$

For the system

$$
\begin{aligned}
i_{0} & =0 \\
i_{r v} & =1 \text { for some } r \\
i_{(r+e)_{v}}-i_{e} & =1 \text { for each } e \in \mathbb{Z}_{n}
\end{aligned}
$$

the solutions we seek are those for which all i_{g} are distinct.
As we just saw $i_{r v+r v^{2}+\cdots+r v^{e}}=e$ for each $e \in \mathbb{Z}_{n}$ which can be simplified to

$$
\begin{aligned}
i_{f r(v+1)} & =2 f \quad \text { if } e=2 f \\
i_{f r(v+1)+r v} & =2 f+1 \text { if } e=2 f+1
\end{aligned}
$$

for $f \in\left\{0, \ldots, \frac{n}{2}-1\right\}$.

So in order that each i_{g} is distinct we consider whether

$$
\begin{aligned}
f_{1} r(v+1) & =f_{2} r(v+1) \\
f_{1} r(v+1)+r v & =f_{2} r(v+1)+r v
\end{aligned}
$$

which is equivalent to $\operatorname{fr}(v+1)=0$.
Since r is a unit then this is equivalent to $f(v+1)=0(\bmod n)$.
In \mathbb{Z}_{n} one has $|v+1|=\frac{n}{\operatorname{gcd}(v+1, n)}$ which means $|v+1|=n / 2$ if and only if $\operatorname{gcd}(v+1, n)=2$ and therefore that $f r(v+1)=0$ only when $f=0$.

We note a technical fact:
Lemma
Let n be even and $v \in \Upsilon_{n}$:
(a) if $8 \nmid n$ then $\operatorname{gcd}(v+1, n)=2$ only if $v=1$
(b) if $8 \mid n$ then $\operatorname{gcd}(v+1, n)=2$ only if $v=1, \frac{n}{2}+1$

So $\mu_{n}=2$ if $8 \mid n$ or $\mu_{n}=1$ if $8 \nmid n$.

So for the solutions of

$$
\begin{aligned}
i_{0} & =0 \\
i_{r v} & =1 \text { for some } r \in U_{n} \\
j_{s v} & =-1 \text { for some } s \in U_{n} \\
i_{(r+e) v}-i_{e} & =1 \text { for each } e \in \mathbb{Z}_{n} \\
j_{(s+e) v}-j_{e} & =-1 \text { for each } e \in \mathbb{Z}_{n} \\
j_{g} & =i_{u g} \text { for each } g \in \mathbb{Z}_{n}
\end{aligned}
$$

for a given $u \in \Upsilon_{n}$, and pair $(r, s) \in U_{n} \times U_{n}$, we must have $s=-u r$ since $j_{g}=i_{u g}$. If $8 \nmid n$ then $v=1$ only, and if $8 \mid n$ $v=1, \frac{n}{2}+1$ and so we have overall

$$
\left|\Upsilon_{n}\right| \cdot \phi(n) \cdot \mu_{n}
$$

distinct $k_{X} k_{Y}$, which yields $\left|\Upsilon_{n}\right| \cdot \mu_{n}$ distinct $K=\left\langle k_{X} k_{Y}\right\rangle$, and so that many $N \in R(G,[G])$ where $\operatorname{Norm}_{B}(N) \leq W\left(X_{0}, Y_{0}\right)$.

This completes the analysis for the case where $\operatorname{Norm}_{B}(N) \leq W\left(X_{0}, Y_{0}\right)$.

We have shown that if $8 \nmid n$ and N has block structure $\left\{X_{0}, Y_{0}\right\}$ then $N \in \mathcal{H}(G)$.

Note, this corresponds to $v=1$ only, and for $8 \mid n$ the $v=\frac{n}{2}+1$ possibility yields the other $\left|\Upsilon_{n}\right|$ different $N \in R(G,[G])$ which do not lie in $\mathcal{H}(G)$.

For n even, the situation is a bit more complicated, but can be understood in terms of the other block structures $\left\{X_{1}, Y_{1}\right\}$ and $\left\{X_{2}, Y_{2}\right\}$.

If n is even then a given $N \in R(G,[G])$ is such that $\operatorname{Norm}_{B}(N) \leq W\left(X_{i}, Y_{i}\right)$ for exactly one $i \in\{0,1,2\}$.

The case where $\operatorname{Norm}_{B}(N) \leq W\left(X_{0}, Y_{0}\right)$ has just been covered.
Let's consider $\operatorname{Norm}_{B}(N) \leq W\left(X_{1}, Y_{1}\right)$ where

$$
\begin{aligned}
& X_{1}=\left\{1, x^{2}, \ldots, x^{n-2}, t, t x^{2}, \ldots, t x^{n-2}\right\} \\
& Y_{1}=\left\{x, x^{3}, \ldots, x^{n-1}, t x, t x^{3}, \ldots, t x^{n-1}\right\}
\end{aligned}
$$

which means N 's characteristic two subgroup K is of the form $\left\langle k_{X} k_{Y}\right\rangle$ where $\operatorname{Supp}\left(k_{X}\right)=X_{1}$ and $\operatorname{Supp}\left(k_{Y}\right)=Y_{1}$.

As such we have

$$
\begin{aligned}
& k_{X}=\left(t^{a_{0}} x^{b_{0}}, t^{a_{1}} x^{b_{1}}, \ldots, t^{a_{n-1}} x^{b_{n-1}}\right) \\
& k_{Y}=\left(t^{c_{0}} x^{d_{0}}, t^{c_{1}} x^{d_{1}}, \ldots, t^{c_{n-1}} x^{d_{n-1}}\right)
\end{aligned}
$$

where $a_{e}, c_{e} \in\{0,1\}$ and $b_{e} \in\{0,2, \ldots, n-2\}$ and $d_{e} \in\{1,3, \ldots, n-1\}$.

Moreover, each even number b_{e} appears twice, and each odd number d_{e} appears twice, and similarly, half of the a_{e} are 0 and half are 1 and similarly for c_{e}.

Now, for

$$
\begin{aligned}
& k_{X}=\left(t^{a_{0}} x^{b_{0}}, t^{a_{1}} x^{b_{1}}, \ldots, t^{a_{n-1}} x^{b_{n-1}}\right) \\
& k_{Y}=\left(t^{c_{0}} x^{d_{0}}, t^{c_{1}} x^{d_{1}}, \ldots, t^{c_{n-1}} x^{d_{n-1}}\right)
\end{aligned}
$$

we can assume that $\left(a_{0}, b_{0}\right)=(0,0)$ and $\left(c_{0}, d_{0}\right)=(0,1)$.
Moreover, we will assume that $\left(a_{r}, b_{r}\right)=(1,0)$ and $\left(c_{s}, d_{s}\right)=(1,1)$ for some r, s since $1, t \in \operatorname{Supp}\left(k_{x}\right)$ and $x, t x \in \operatorname{Supp}\left(k_{Y}\right)$.

The idea then will be to again determine equations amongst the $a_{e}, b_{e}, c_{e}, d_{e}$ whose solutions govern the potential generators of any such $K \leq N$ characteristic (of index 2) for $N \in R(G,[G])$.

We have that $\lambda(x)$ and $\lambda(t)$ must normalize K since K is characteristic in N.

Since

$$
\begin{aligned}
& \lambda(t)=(1, t)(x, t x) \ldots\left(x^{n-1}, t x^{n-1}\right) \\
& \lambda(x)=\left(1, x, \ldots, x^{n-1}\right)\left(t, t x^{n-1}, \ldots, t x\right)
\end{aligned}
$$

we have that $\lambda(t)\left(X_{1}\right)=X_{1}$ and $\lambda(t)\left(Y_{1}\right)=Y_{1}$ while $\lambda(x)\left(X_{1}\right)=Y_{1}$ and $\lambda(x)\left(Y_{1}\right)=X_{1}$ and so

$$
\begin{aligned}
& \lambda(t) k_{X} \lambda(t)=k_{X}^{u} \\
& \lambda(t) k_{Y} \lambda(t)=k_{Y}^{u} \text { for some } u \in \Upsilon_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda(x) k_{X} \lambda(x)^{-1}=k_{Y}^{v} \\
& \lambda(x) k_{Y} \lambda(x)^{-1}=k_{X}^{v} \text { for some } v \in U_{n} \text { where } v^{n}=1
\end{aligned}
$$

As such, conjugation by $\lambda(t)$ yields

$$
\begin{aligned}
& \left(t^{a_{0}+1} x^{b_{0}}, t^{a_{1}+1} x^{b_{1}}, \ldots, t^{a_{n-1}+1} x^{b_{n-1}}\right)=\left(t^{a_{0}} x^{b_{0}}, t^{a_{u}} x^{b_{u}}, \ldots, t^{a_{(n-1) u}} x^{b_{(n-1) u}}\right) \\
& \left(t^{c_{0}+1} x^{d_{0}}, t^{c_{1}+1} x^{d_{1}}, \ldots, t^{c_{n-1}+1} x^{d_{n-1}}\right)=\left(t^{c_{0}} x^{d_{0}}, t^{d_{u}} x^{d_{u}}, \ldots, t^{c_{(n-1) u}} x^{d_{(n-1) u}}\right)
\end{aligned}
$$

And since $\left(a_{0}, b_{0}\right)=(0,0)$ then $\left(a_{0}+1, b_{0}\right)=(1,0)=\left(a_{r}, b_{r}\right)$ and $\left(c_{0}+1, d_{0}\right)=\left(c_{s}, d_{s}\right)$ which implies that

$$
\begin{aligned}
\left(t^{a_{0}+1} x^{b_{0}}, t^{a_{1}+1} x^{b_{1}}, \ldots, t^{a_{n-1}+1} x^{b_{n-1}}\right) & =\left(t^{a_{r}} x^{b_{r}}, t^{a_{r+u}} x^{b_{r+u}}, \ldots, t^{a_{r+(n-1) u}} x^{b_{r+(n-1) u}}\right) \\
\left(t^{c_{0}+1} x^{d_{0}}, t^{c_{1}+1} x^{d_{1}}, \ldots, t^{c_{n-1}+1} x^{d_{n-1}}\right) & =\left(t^{c_{s}} x^{d_{s}}, t^{d_{s+u}} x^{d_{s+u}}, \ldots, t^{c_{s+(n-1) u}} x^{d_{s+(n-1) u}}\right)
\end{aligned}
$$

and so

$$
\begin{aligned}
b_{e} & =b_{r+e u} \\
d_{e} & =d_{s+e u} \\
a_{e}+1 & =a_{r+e u} \\
c_{e}+1 & =c_{s+e u}
\end{aligned}
$$

for each $e \in \mathbb{Z}_{n}$.

Similarly, conjugation by $\lambda(x)$ yields

$$
\begin{aligned}
&\left(t^{a_{0}} x^{b_{0}+(-1)^{a_{0}}}, t^{a_{1}} x^{b_{1}+(-1)^{a_{1}}}, \ldots, t^{a_{n-1}} x^{b_{n-1}+(-1)^{a_{n-1}}}\right)=\left(t^{c_{0}} x^{d_{0}}, t^{c_{v}} x^{d_{v}}, \ldots, t^{c_{(n-1) v}} x^{d_{(n-1) v}}\right) \\
&\left(t^{c_{0}} x^{d_{0}+(-1)^{c_{0}}}, t^{c_{1}} x^{d_{1}+(-1)^{c_{1}}}, \ldots, t^{c_{n-1}} x^{d_{n-1}+(-1)^{c_{n-1}}}\right)=\left(t^{a_{0}} x^{b_{0}}, t^{a_{v}} x^{b_{v}}, \ldots, t^{a_{(n-1) v}} x^{b_{(n-1) v}}\right)
\end{aligned}
$$

Here, $\left(a_{0}, b_{0}\right)=(0,0)$ yields $\left(a_{0}, b_{0}+(-1)^{a_{0}}\right)=(0,1)=\left(c_{0}, d_{0}\right)$ so the first equation directly yields that

$$
\begin{aligned}
& c_{e v}=a_{e} \\
& d_{e v}=b_{e}+(-1)^{a_{e}}
\end{aligned}
$$

for each $e \in \mathbb{Z}_{n}$.

And since $\left(c_{s}, d_{s}\right)=(1,1)$ then $\left(c_{s}, d_{s}+(-1)^{c_{s}}\right)=(1,0)=\left(a_{r}, b_{r}\right)$ which means that

$$
\begin{aligned}
\left(t^{c_{0}} x^{d_{0}+(-1)^{c_{0}}}, t^{c_{1}} x^{d_{1}+(-1)^{c_{1}}}, \ldots, t^{c_{n-1}} x^{d_{n-1}+(-1)^{c_{n-1}}}\right) & =\left(t^{a_{0}} x^{b_{0}}, t^{a_{1}} x^{b_{1}}, \ldots, t^{a_{(n-1)}} x^{b_{(n-1)}}\right)^{v} \\
& =\left(t^{a_{r}} x^{b_{r}}, t^{a_{r+1}} x^{b_{r+1}}, \ldots, t^{a_{r+(n-1)}} x^{b_{r+(n-1)}}\right)^{v} \\
& \downarrow \\
\left(t^{c_{s}} x^{d_{s}+(-1)^{c_{s}}}, t^{c_{s+1}} x^{d_{s+1}+(-1)^{c_{s}+1}}, \ldots, t^{c_{s+n-1}} x^{d_{s+n-1}+(-1)^{c_{s+n-1}}}\right) & = \\
& \left(t^{a_{r}} x^{b_{r}}, t^{a_{r+v}} x^{b_{r+v}}, \ldots, t^{a_{r+(n-1) v}} x^{b_{r+(n-1) v}}\right)
\end{aligned}
$$

which yields

$$
\begin{aligned}
c_{s+e} & =a_{r+e v} \\
d_{s+e}+(-1)^{c_{s+e}} & =b_{r+e v}
\end{aligned}
$$

So a given

$$
\begin{aligned}
K & =\left\langle k_{x} k_{Y}\right\rangle \\
& =\left\langle\left(t^{a_{0}} x^{b_{0}}, t^{a_{1}} x^{b_{1}}, \ldots, t^{a_{n-1}} x^{b_{n-1}}\right)\left(t^{c_{0}} x^{d_{0}}, t^{c_{1}} x^{d_{1}}, \ldots, t^{c_{n-1}} x^{d_{n-1}}\right)\right\rangle
\end{aligned}
$$

being normalized by $\lambda(G)$ implies that the following system of equations must be satisfied for each $e \in \mathbb{Z}_{n}$

$$
\begin{aligned}
a_{e}+1 & =a_{r+e u} \\
c_{e}+1 & =c_{s+e u} \\
c_{e v} & =a_{e} \\
c_{s+e} & =a_{r+e v}
\end{aligned}
$$

$$
\begin{aligned}
b_{e} & =b_{r+e u} \\
d_{e} & =d_{s+e u} \\
d_{e v} & =b_{e}+(-1)^{a_{e}} \\
b_{r+e v} & =d_{s+e}+(-1)^{c_{s+e}}
\end{aligned}
$$

where $a_{e}, c_{e} \in \mathbb{Z}_{2}, b_{e} \in\{0,2, \ldots, n-2\}, d_{e} \in\{1,3, \ldots, n-1\}$ and

$$
\begin{aligned}
\left(a_{o}, b_{0}\right) & =(0,0) \\
\left(a_{r}, b_{r}\right) & =(1,0) \\
\left(c_{0}, d_{0}\right) & =(0,1) \\
\left(c_{s}, d_{s}\right) & =(1,1)
\end{aligned}
$$

Two immediate consequences:
Since $b_{e}=b_{r+e u}$ then we must have $b_{r+e u}=b_{r+(r+e u) u}=b_{e}$ since the b 's must consist of two copies of every even integer between 0 and $n-2$.

As such (since $u^{2}=1$) we have $r(u+1)=0$, and similarly $d_{e}=d_{s+e u}$ implies that $s(u+1)=0$.

Additionally, the equations $a_{e}+1=a_{r+e u}$ and $c_{e}+1=c_{s+e u}$ imply that $r+e u \neq e$ and $s+e u \neq e$ which means that $r \notin\langle 1-u\rangle$ and $s \notin\langle 1-u\rangle$.

It turns out that, in fact, $u=-1$ so that $r(u+1)=0$ and $s(u+1)=0$ automatically and $r \notin\langle 1-u\rangle=\langle 2\rangle$ and $s \notin\langle 1-u\rangle=\langle 2\rangle$.
Furthermore, we must have that, in fact, $v^{2}=1$. (i.e. $v \in \Upsilon_{n}$)
And while r, s need not be units, they must satisfy $(s-r v) / 2 \in U_{n / 2}$ which yields δ_{n} possible $k_{X} k_{Y}$ where

$$
\begin{aligned}
\delta_{n} & =\mid\left\{(v, r, s) \in \Upsilon_{n} \times \mathbb{Z}_{n} \times \mathbb{Z}_{n} \mid((s-r v) / 2) \in U_{n / 2} \text { and } s, r \notin\langle 2\rangle\right\} \mid \\
& =\frac{n}{2} \cdot\left|\Upsilon_{n}\right| \cdot \phi\left(\frac{n}{2}\right) \\
& = \begin{cases}\frac{n}{2} \cdot\left|\Upsilon_{n}\right| \cdot \phi(n) & 4 \nmid n \\
\frac{n}{2} \cdot\left|\Upsilon_{n}\right| \cdot \frac{\phi(n)}{2} & 4 \mid n\end{cases}
\end{aligned}
$$

and so $\frac{\delta_{n}}{\phi(n)}$ possible K which therefore enumerates the $N \in R(G,[G])$ where $\operatorname{Norm}_{B}(N) \leq W\left(X_{1}, Y_{1}\right)$.

For those $N \in R(G,[G])$ where $\operatorname{Norm}_{B}(N) \leq W\left(X_{2}, Y_{2}\right)$ we can utilize the following:
Lemma
The automorphism $\phi_{(1,1)} \in \operatorname{Aut}\left(D_{n}\right)$, where $\phi\left(x^{b}\right)=x^{b}$ and $\phi\left(t x^{b}\right)=t x^{b+1}$ has the property that $\phi\left(X_{1}\right)=X_{2}, \phi\left(X_{2}\right)=X_{1}$ and that $\phi\left(Y_{1}\right)=Y_{2}$ and $\phi\left(Y_{2}\right)=Y_{1}$, and also $\phi\left(X_{0}\right)=Y_{0}$ and $\phi\left(Y_{0}\right)=X_{0}$.

And since $\phi_{(1,1)} W\left(X_{i}, Y_{i}\right) \phi_{(1,1)}^{-1}=W\left(\phi_{(1,1)}\left(X_{i}\right), \phi_{(1,1)}\left(Y_{i}\right)\right)$ and for a given $N \in R(G,[G])$ one has that $\operatorname{Norm}_{B}(N)$ is contained in $W\left(X_{i}, Y_{i}\right)$ for exactly one $\left\{X_{i}, Y_{i}\right\}$ we have the following:

Theorem
If $R\left(G,[G] ;\left\{X_{i}, Y_{i}\right\}\right)$ is the set of those $N \in R(G,[G])$ such that $\operatorname{Norm}_{B}(N) \leq W\left(X_{i}, Y_{i}\right)$ then
$\left|R\left(G,[G] ;\left\{X_{1}, Y_{1}\right\}\right)\right|=\left|R\left(G,[G] ;\left\{X_{2}, Y_{2}\right\}\right)\right|$.
In summary

$$
\left|R\left(D_{n},\left[D_{n}\right]\right)\right|= \begin{cases}\left(\frac{n}{2}+2\right)\left|\Upsilon_{n}\right| & \text { if } 8 \mid n \\ \left(\frac{n}{2}+1\right)\left|\Upsilon_{n}\right| & \text { if } 4 \mid n \text { but } 8 \nmid n \\ (n+1)\left|\Upsilon_{n}\right| & \text { if } 2 \mid n \text { but } 4 \nmid n \\ \left|\Upsilon_{n}\right| & \text { if } n \text { odd }\end{cases}
$$

Thank you!

目 T. Kohl.
Multiple holomorphs of dihedral and quaternionic groups.
Comm. Alg., 43:4290-4304, 2015.

