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Hopf-Galois Theory

An extension K/k is Hopf-Galois if there is a k-Hopf algebra H
and a k-algebra homomorphism µ : H → Endk(K ) such that

I µ(ab) =
∑

(h) µ(h(1)(a)µ(h(2))(b)

I KH = {a ∈ K | µ(h)(a) = ε(h)a ∀h ∈ H} = k

I µ induces I ⊗ µ : K#H
∼=→ Endk(K )



By the Greither-Pareigis theorem, for K/k a Galois extension of
fields with G = Gal(K/k) the Hopf algebras which act are of the
form (K [N])G where N ≤ B = Perm(G ) is a regular subgroup
normalized by λ(G ) ≤ B.

The enumeration therefore is of those regular N ≤ B, where N
must have the same cardinality as G but need not be isomorphic.



To organize any such enumeration we define:

R(G ) = {N ≤ B |N regular and λ(G ) ≤ NormB(N)}
R(G , [M]) = {N ∈ R(G )|N ∼= M}

where [M] denotes an isomorphism class of a group of order |G |.

We will be considering R(G , [G ]) for G a dihedral group.



The general setup will be as follows. We assume that L/K is
Galois with group G = Dn and so B = Perm(G ) where Dn may be
presented as

Dn = {x , t| xn = 1, t2 = 1, xt = tx−1}
= {1, x , x2, . . . , xn−1, t, tx , tx2, . . . , txn−1}

where |Dn| = 2n, for n ≥ 3.



Note, for N a regular subgroup of B one has

NormB(N) ∼= Hol(N) ∼= N o Aut(N)

and since N ∈ R(Dn, [Dn]) we begin with a number of observations
about Dn and its holomorph.



Proposition

For n ≥ 3 with Dn = {taxb|a ∈ Z2; b ∈ Zn} and letting Un = Z∗n

(a) C = 〈x〉 is a characteristic subgroup of Dn

(b) Aut(Dn) = {φi ,j |i ∈ Zn; j ∈ Un} where

φi ,j(t
axb) = tax ia+jb

φi2,j2 ◦ φi1,j1 = φi2+j2i1,j2j1

(c) Aut(Dn) ∼= Hol(Zn)



In order to organize the enumeration of the N ∈ R(G , [G ]) we
consider some global structural information about how a regular
subgroup isomorphic to Dn acts on the elements of Dn viewed as a
set.



Wreath Products and Blocks

Definition
If G is a permutation group acting on a set Z then a block for G is
a subset X ⊆ Z such that for g ∈ G , X g = X or X g ∩ X = ∅.
In our example, we shall consider Z as the underlying set of
G = Dn and look at blocks arising from subgroups of
B = Perm(G ) and in particular how regularity ties in with these
block structures. Recalling our presentation of Dn define :

X = {1, x , x2, . . . , xn−1}
Y = {t, tx , tx2, . . . , txn−1}
Z = X ∪ Y

where Z = G (as sets) and B ∼= Perm(Z ).



Next, define τ∗ : X → Y by τ∗(x
j) = tx j which induces an

isomorphism Perm(X )→ Perm(Y )

From here on, we set BX = Perm(X ) and BY = Perm(Y ) and
consider

W (X ,Y ) = (BX × BY ) o 〈τ〉

where τ has order 2 and is defined as follows:

τ(β)(x) = τ−1
∗ (β(τ∗(x))) for x ∈ X and β ∈ BY

τ(α)(y) = τ∗(α(τ−1
∗ (y))) for y ∈ Y and α ∈ BX

As BX
∼= BY

∼= Sn and 〈τ〉 ∼= S2 we find that

W (X ,Y ) ∼= Sn o S2

the wreath product of Sn and S2.



Note: As an element of B,

τ = (1, t)(x , tx) . . . (xn−1, txn−1)

= λ(t)

Define a map δ : W (X ,Y )→ B = Perm(Z ) by

δ(α, β, τk)(z) =


β(τ∗(z)), k = 1, z ∈ X

α(z), k = 0, z ∈ X

α(τ−1
∗ (z)), k = 1, z ∈ Y

β(z), k = 0, z ∈ Y

It is readily verified that δ is an embedding of W (X ,Y ) as a
subgroup of B.



We need to make a number of observations about wreath products
such as W (X ,Y ) which are probably known but for which no
convenient reference could be found.

Lemma
If w ∈W (X ,Y ) then either w(X ) = X and w(Y ) = Y or
w(X ) = Y and w(Y ) = X .

As such, we may regard W (X ,Y ) as the maximal subgroup of B
for which X is a block.



Although we shall use the above indicated choice of τ∗, it is useful
to observe the following.

Proposition

For any two bijections τ∗ and τ ′∗ of X to Y , the induced wreath
products W and W ′ are equal as subgroups of B.



Definition
For Z such that |Z | = 2n, a splitting {X ,Y } of Z is a partition of
Z into two equal size subsets.

We note that for a given splitting {X ,Y } of Z every bijection
τ∗ : X → Y yields the same subgroup of B which we may denote
W (X ,Y ; τ∗) or simply W (X ,Y ).

Also, for later use, we note the following:

Proposition

For a given splitting {X ,Y } and σ ∈ B, we have
σW (X ,Y )σ−1 = W (X σ,Y σ) where X σ = σ(X ) and Y σ = σ(Y ).



Corollary

NormB(W (X ,Y )) = W (X ,Y )

As a small aside, we can consider, for a given {X ,Y } the subgroup
S(X ,Y ) = BX × BY of B.

Proposition

S(X ,Y ) /W (X ,Y ) and, in fact, NormB(S(X ,Y )) = W (X ,Y ).

Note, W (X ,Y ) = S(X ,Y ) ∪ S(X ,Y )τ for any τ induced by
τ∗ : X → Y .



Before considering the enumeration of R(G ) we shall first consider
how regularity and block structure are connected.

Proposition

If N ≤ B is regular then N ≤W (X ,Y ) if and only if N contains
an index 2 subgroup K with X = KeG . (assuming eG ∈ X )



The K ’s which arise are of course normal, but we need the
following fact about the normalizers of regular subgroups N.

Proposition

If N ≤ B is regular and N ≤W (X ,Y ) corresponding to K ≤ N as
above, then NormB(N) ≤W (X ,Y ) if and only if K is a
characteristic subgroup of N.

Corollary

If N ≤ B is regular and N ≤W (X ,Y ) corresponding to K ≤ N as
above, and K is unique, then NormB(N) ≤W (X ,Y ) for the
splitting {X ,Y } corresponding to K only.



Proof.
The bijection b : N → G (given by b(n) = neG ) induces an
isomorphism φ : Perm(G )→ Perm(N) and if X = KeG , then
b(X ) = KeN = K = X̃ , and similarly Z̃ = N and Ỹ = Z̃ − X̃ . In
Perm(N) we have φ(K ) = λ(K ) ≤ λ(N) = φ(N) corresponding to
X̃ = K . Now, Hol(N) = NormPerm(N)(N) = ρ(N)Aut(N) and so
for η ∈ Hol(N) we have η = ρ(m)α for m ∈ N and α ∈ Aut(N)
and so if K is characteristic then

η(X̃ ) = ρ(m)α(K )

= Km−1

= K or N − K (i .e. X̃ or Ỹ )

For the converse observe that N = K ∪ nK (for some n 6∈ K ) and
so for α ∈ Aut(N) ≤ NormB(N) we have α(K ) = K or nK which,
of course, means α(K ) = K , so, in fact, NormB(N) ≤W (X ,Y )
implies Aut(N) ≤ S(X ,Y ) = BX × BY .



The block/splitting structure of λ(G ) for G = Dn is as follows.

Proposition

Given G = Dn as presented above, then:

(a) If n is odd, then λ(G ) ≤W (X0,Y0) for exactly one {X0,Y0}.

(b) If n is even then λ(G ) ≤W (Xi ,Yi ) for exactly three {Xi ,Yi}



Proof

The underlying set is {1, x , . . . , xn−1, t, tx , . . . , txn−1} and

λ(x) = (1 x · · · xn−1)(t txn−1 . . . tx)

and
λ(t) = (1 t)(x tx) · · · (xn−1 txn−1)

For n odd, the claim is that there is exactly one block of size n
(equivalently only one splitting yielding a wreath product
containing G ), namely

X0 = {1, x , . . . , xn−1} and Y0 = {t, tx , . . . , txn−1}

which corresponds to the unique index 2 subgroup K0 = 〈λ(x)〉
where X0 = Orb〈λ(x)〉(1).



For n even, we have the following two additional splittings:

X1 = {1, x2, . . . , xn−2, t, tx2, . . . , txn−2}
Y1 = {x , x3, . . . , xn−1, tx , tx3, . . . , txn−1}

and

X2 = {1, x2, . . . , xn−2, tx , tx3, . . . , txn−1}
Y2 = {x , x3, . . . , xn−1, t, tx2, . . . , txn−2}

which correspond to the additional index 2 subgroups
K1 = 〈λ(x2), λ(t)〉 and K2 = 〈λ(x2), λ(txn−1)〉

However, only K0 is ever characteristic.



Corollary

For all n, if G = Dn then Hol(G ) ≤W (X0,Y0) for a unique
{X0,Y0}.

i.e. For n even, λ(G ) is contained in W (Xi ,Yi ) for i = 0, 1, 2, but
the holomorph is only contained in W (X0,Y0).

Now, as far as the membership of R(Dn, [Dn]) is concerned, we
have the following.



Theorem
Let N ∈ R(Dn, [Dn]) with K the characteristic index 2 subgroup of
N and X = K · 1 (with Y = Z − X ).

(a) If n is odd then X = X0.

(b) If n is even then X = Xi for either i = 0, 1, or 2.

Part (a) is a consequence of the fact that λ(G ) ≤W (X0,Y0)
uniquely so that λ(G ) ≤ NormB(N) ≤W (X ,Y ) implies X = X0.

Part (b) is a consequence of the fact that NormB(N) ≤W (X ,Y )
and λ(G ) ≤W (Xi ,Yi ) for i = 0, 1, 2 so that X must be Xi for
exactly one such i .



The splitting corresponding to the index 2 characteristic subgroup
K of any N ∈ R(Dn, [Dn]) is sufficient to actually determine N
itself.

To see this, we start by considering the subgroup
K0 = 〈λ(x)〉 ≤ λ(Dn)

Proposition

[1, Prop. 2.6] Given G = Dn as presented above, with
K0 = λ(〈x〉) ≤ λ(G ), NormB(K0) = NormB(λ(G )) = Hol(G ).

What we have in general is that if N ∼= Dn is regular and K its
index 2 characteristic subgroup then NormB(N) = NormB(K ).



Theorem
For G = Dn, if G ∼= N ≤ B is regular with K ≤ N the index 2
characteristic subgroup then λ(G ) normalizes N iff and only if
λ(G ) normalizes K .

The advantage of this is that, if K is generated by kXkY (a
product of two disjoint n-cycles) where 1 ∈ Supp(kX ) we can focus
on how it is acted on by λ(x) and λ(t), starting with the fact that
Orb〈kX 〉(1) = Xi for i = 0, 1, or 2 as indicated above.



Moreover, we need not worry about the order 2 generator of N.

Why?

Proposition

If kXkY is product of two disjoint n-cycles, then K = 〈kXkY 〉 is
the index 2 characteristic subgroup of exactly one regular subgroup
N ≤ B where N ∼= Dn.



(Why?) Since τ has order 2, it must be a product of n disjoint
transpositions by regularity.

We claim that τ(X ) = Y and τ(Y ) = X .

If n is odd then τ(X ) = X and τ(Y ) = Y is clearly impossible
since one of the transpositions would have to contain an element
of X and one from Y which would contradict τ(X ) = X .

If n is even then one could have n/2 transpositions with elements
from X and n/2 transpositions with elements from Y , but what
would happen is that the resulting group 〈kxky , τ〉 would have
fixed points.



For example, if kX = (1, 2, 3, 4) and kY = (5, 6, 7, 8) and
τ = (1, 4)(2, 3)(5, 8)(6, 7) then τkX τ

−1 = k−1
X and τkY τ

−1 = k−1
Y

so that 〈kxky , τ〉 ∼= D4 but this group is not fixed point free, e.g.

(1, 2, 3, 4)(5, 6, 7, 8)(1, 4)(2, 3)(5, 8)(6, 7) = (2, 4)(6, 8)

In contrast 〈(1, 2, 3, 4)(5, 6, 7, 8), (1, 8)(2, 7)(3, 6)(4, 5)〉 is also
isomorphic to D4 but is regular too.



As such τ is a product of disjoint transpositions where each
transposition contains one element from X and one from Y .

Specifically if kX = (z1, z2, . . . , zn) and kY = (z ′1, z
′
2, . . . z

′
n)

(whence k−1
Y = (z ′n, z

′
n−1, . . . , z

′
2, z
′
1)) then the only possibilities for

τ are

(z1, z
′
n)(z2, z

′
n−1)(z3, z

′
n−2) · · · (zn, z ′1)

(z1, z
′
n−1)(z2, z

′
n−2)(z3, z

′
n−3) · · · (zn, z ′n)

(z1, z
′
n−2)(z2, z

′
n−3)(z3, z

′
n−4) · · · (zn, z ′n−1)

...

(z1, z
′
1)(z2, z

′
n)(z3, z

′
n−1) · · · (zn, z ′2)

where each (together with kXky ) generate the same group.



As such, the enumeration of N ∈ R(Dn, [Dn]) is equivalent to the
characterization of K ≤ N the (cyclic) characteristic subgroup of
index 2.

We divide the analysis between the case where n is odd, versus
when n is even.



Also integral to the determination of |R(G , [G ])| is the notion of
the multiple holomorph of a group.

Briefly, the collection

H(G ) = { regular N ≤ Hol(G ) | N ∼= G and Hol(N) = Hol(G )}

is exactly parameterized by τ ∈ T (G ) = NormB(Hol(G ))/Hol(G )
the multiple holmorph of G .
i.e.

H(G ) = {τλ(G )τ−1 |τ ∈ T (G )}

And since λ(G ) ≤ Hol(G ) = Hol(N) it is quite clear that
H(G ) ⊆ R(G , [G ]).



And for Dn we have the following

Theorem
[1, Thm. 2.11] For G = Dn we have:

|H(Dn)| = |T (Dn)| = |Υn|

where Υn = {u ∈ Un | u2 = 1} the units of exponent 2 mod n.



What we wish to show is the following:

Theorem
For G = Dn we have that |R(G , [G ])| equals

(a) |Υn| if n is odd, where all NormB(N) ≤W (X0,Y0)

(b) µn|Υn| for n even, for NormB(N) ≤W (X0,Y0) where

µn = |{v ∈ Υn | gcd(v + 1, n) = 2}|

(c)
n
2
·|Υn|·φ( n

2
)

φ(n) for n even, for NormB(N) ≤W (Xi ,Yi ) for i = 1, 2

[Note: If 8|n then µn = 2 otherwise µn = 1.]



We start by considering those N ∈ R(G , [G ]) for which
NormB(N) ≤W (X0,Y0) where

X0 = {1, x , . . . , xn−1}
Y0 = {t, tx , . . . , txn−1}

and we recall that this is true automatically if n is odd.

In this case, if K ≤ N is the (unique) subgroup of index 2, we have
K = 〈k〉 = 〈kXkY 〉 where Supp(kX ) = X0 and Supp(kY ) = Y0.



Since Supp(kX ) = X0 and Supp(kY ) = Y0 then kX (x i ) = xkX (i)

and kY (tx j) = txkY (j) so we may, for convenience, identify

kX = (x i0 , x i1 , . . . , x in−1) = (i0, i1, . . . , in−1)

kY = (tx j0 , tx j1 , . . . , tx jn−1) = (j0, j1, . . . , jn−1)

The question is, what are the possibilities for these two n-cycles?

We begin by using the fact that N (whence K ) is normalized by
λ(Dn) so in particular by λ(t) and λ(x).



We have

λ(x)kλ(x)−1(x i ) = λ(x)k(x i−1)

= λ(x)(xkX (i−1))

= xkX (i−1)+1

and

λ(x)kλ(x)−1(tx j) = λ(x)k(x j+1)

= λ(x)(txkY (j+1))

= txkY (j+1)−1

where λ(x)kλ(x)−1 = kv = kvXk
v
Y for some v ∈ Un where vn = 1.



So under the identification

kX = (i0, i1, . . . , in−1)

kY = (j0, j1, . . . , jn−1)

i0 = 0 j0 = 0

we have kvX = (i0, iv , . . . , i(n−1)v ) and kvY = (j0, jv , . . . , j(n−1)v ) and
therefore:

kX (ia − 1) = ia+v − 1

kY (jb + 1) = jb+v + 1



If we assume irv = 1 for some r then we have

kX (irv − 1) = kX (0) = kX (i0) = i(r+1)v − 1 = i1

but then

kX (i1) = kX (i(r+1)v − 1) = i(r+2)v − 1 = i2

kX (i2) = kX (i(r+2)v − 1) = i(r+3)v − 1 = i3

. . .

which implies that i(r+e)v − ie = 1 for each e ∈ Zn.



Similarly, for some s, we have jsv + 1 = j0 = 0 (i.e. jsv = −1) and
so a similar inductive argument shows that

j(s+e)v − je = −1 = n − 1

for each e ∈ Zn.



Normalization by λ(t) yields

λ(t)kλ(t)−1(x i ) = λ(t)k(tx i )

= λ(t)(txkY (i))

= xkY (i)

and

λ(t)kλ(t)−1(tx j) = λ(t)k(x j)

= λ(t)(xkX (j))

= txkX (j)

where λ(t)kλ(t)−1 = ku = kuXk
u
Y for some u ∈ Un where u2 = 1.



What this implies is that x ie+u = kuX (x ie ) = xkY (ie), and if we again
focus on the exponents we get

ie+u = kuX (ie) = kY (ie)

so we can consider what happens with e = 0, 1, . . . (recalling that
i0 = j0 = 0 and that kY (jf ) = jf +1) then we get

iu = kY (i0) = kY (j0) = j1

i2u = kY (iu) = kY (j1) = j2

i3u = kY (i2u) = kY (j2) = j3
...

namely jf = iuf for each f ∈ Zn, and since u2 = 1 we can write
this as juf = if too.



So to summarize so far, we have n-cycles (i0, . . . , in−1) and
(j0, . . . , jn−1) where the i ′s and j ′s satisfy the following relations

i0 = 0

j0 = 0

irv = 1 for some r

jsv = −1 for some s

i(r+e)v − ie = 1 for each e ∈ Zn

j(s+e)v − je = −1 for each e ∈ Zn

jg = iug for each g ∈ Zn

where u2 = 1 and vn = 1.

So the question is what are the solutions of this system of
equations, as these determine the possibilities for k = kXkY .



Simplification (1): The relation iug = jg implies that the values of
jg are completely determined by ig for g ∈ Zn since u is a unit.

Simplification (2): We can show that, in fact, r , s ∈ Un.



Why are r , s ∈ Un?

If r 6∈ Un then for some m < n we have mr ≡ 0( mod n).

From the relation i(r+e)v − ie = 1 we have

irv − i0 = 1 [e = 0]

i2rv − irv = 1 [e = r ]

i3rv − i2rv = 1 [e = 2r ]

...

imrv − i(m−1)rv = 1 [e = (m − 1)r ]



Looking at the left and right hand sides, we see that the indices
{0, rv , . . . , (m − 1)rv} and {0, r , . . . , (m − 1)r} are equal since
v ∈ Un.

As such, if we add these m equations we get

0 = (
m−1∑
e=0

ierv )− (
m−1∑
f =0

ifr ) = m

in Zn which is impossible since m < n.

So we conlude that in fact r ∈ Un and similarly s ∈ Un as well.



The next task is to determine v ∈ Un, which (at the very least)
must satisfy the equation vn = 1.

From i(r+e)v − ie = 1, i0 = 0, irv = 1 we obtain

irv+rv2 − irv = 1 [i.e. irv+rv2 = 2]

irv+rv2+rv3 − irv+rv2 = 1 [i.e. irv+rv2+rv3 = 3]

...

irv+rv2+···+rv e = e



We can now use this relation as follows:

rv = u(sv + · · ·+ svn−1) i.e. [e = 1]

rv + rv2 = u(sv + · · ·+ svn−2) i.e. [e = 2]

which implies r = −usvn−3, and for e = 3 we have

rv + rv2 + rv3 = u(sv + · · ·+ svn−3)

which paired with the e = 2 case yields r = −usvn−5 which
ultimately implies v2 = 1.



Now, if n is odd then vn = 1 together with v2 = 1 immediately
implies that v = 1.

If n is even then we can use the v2 = 1 relation as follows.

If in irv+rv2+···+rv e = e we look at the index rv + rv2 + · · ·+ rv e we
have

rv + rv2 + · · ·+ rv e =

{
fr(v + 1) if e = 2f

fr(v + 1) + rv if e = 2f + 1



For the system

i0 = 0

irv = 1 for some r

i(r+e)v − ie = 1 for each e ∈ Zn

the solutions we seek are those for which all ig are distinct.

As we just saw irv+rv2+···+rv e = e for each e ∈ Zn which can be
simplified to

ifr(v+1) = 2f if e = 2f

ifr(v+1)+rv = 2f + 1 if e = 2f + 1

for f ∈ {0, . . . , n2 − 1}.



So in order that each ig is distinct we consider whether

f1r(v + 1) = f2r(v + 1)

f1r(v + 1) + rv = f2r(v + 1) + rv

which is equivalent to fr(v + 1) = 0.

Since r is a unit then this is equivalent to f (v + 1) = 0 (mod n).

In Zn one has |v + 1| = n
gcd(v+1,n) which means |v + 1| = n/2 if

and only if gcd(v + 1, n) = 2 and therefore that fr(v + 1) = 0 only
when f = 0.



We note a technical fact:

Lemma
Let n be even and v ∈ Υn:

(a) if 8 - n then gcd(v + 1, n) = 2 only if v = 1
(b) if 8|n then gcd(v + 1, n) = 2 only if v = 1, n2 + 1

So µn = 2 if 8|n or µn = 1 if 8 - n.



So for the solutions of

i0 = 0

irv = 1 for some r ∈ Un

jsv = −1 for some s ∈ Un

i(r+e)v − ie = 1 for each e ∈ Zn

j(s+e)v − je = −1 for each e ∈ Zn

jg = iug for each g ∈ Zn

for a given u ∈ Υn, and pair (r , s) ∈ Un × Un, we must have
s = −ur since jg = iug . If 8 - n then v = 1 only, and if 8|n
v = 1, n2 + 1 and so we have overall

|Υn| · φ(n) · µn

distinct kXkY , which yields |Υn| · µn distinct K = 〈kXkY 〉, and so
that many N ∈ R(G , [G ]) where NormB(N) ≤W (X0,Y0).



This completes the analysis for the case where
NormB(N) ≤W (X0,Y0).

We have shown that if 8 - n and N has block structure {X0,Y0}
then N ∈ H(G ).

Note, this corresponds to v = 1 only, and for 8|n the v = n
2 + 1

possibility yields the other |Υn| different N ∈ R(G , [G ]) which do
not lie in H(G ).

For n even, the situation is a bit more complicated, but can be
understood in terms of the other block structures {X1,Y1} and
{X2,Y2}.



If n is even then a given N ∈ R(G , [G ]) is such that
NormB(N) ≤W (Xi ,Yi ) for exactly one i ∈ {0, 1, 2}.

The case where NormB(N) ≤W (X0,Y0) has just been covered.

Let’s consider NormB(N) ≤W (X1,Y1) where

X1 = {1, x2, . . . , xn−2, t, tx2, . . . , txn−2}
Y1 = {x , x3, . . . , xn−1, tx , tx3, . . . , txn−1}

which means N’s characteristic two subgroup K is of the form
〈kxkY 〉 where Supp(kx) = X1 and Supp(kY ) = Y1.



As such we have

kX = (ta0xb0 , ta1xb1 , . . . , tan−1xbn−1)

kY = (tc0xd0 , tc1xd1 , . . . , tcn−1xdn−1)

where ae , ce ∈ {0, 1} and be ∈ {0, 2, . . . , n − 2} and
de ∈ {1, 3, . . . , n − 1}.

Moreover, each even number be appears twice, and each odd
number de appears twice, and similarly, half of the ae are 0 and
half are 1 and similarly for ce .



Now, for

kX = (ta0xb0 , ta1xb1 , . . . , tan−1xbn−1)

kY = (tc0xd0 , tc1xd1 , . . . , tcn−1xdn−1)

we can assume that (a0, b0) = (0, 0) and (c0, d0) = (0, 1).

Moreover, we will assume that (ar , br ) = (1, 0) and (cs , ds) = (1, 1)
for some r , s since 1, t ∈ Supp(kx) and x , tx ∈ Supp(kY ).

The idea then will be to again determine equations amongst the
ae , be , ce , de whose solutions govern the potential generators of any
such K ≤ N characteristic (of index 2) for N ∈ R(G , [G ]).



We have that λ(x) and λ(t) must normalize K since K is
characteristic in N.

Since

λ(t) = (1, t)(x , tx) . . . (xn−1, txn−1)

λ(x) = (1, x , . . . , xn−1)(t, txn−1, . . . , tx)

we have that λ(t)(X1) = X1 and λ(t)(Y1) = Y1 while
λ(x)(X1) = Y1 and λ(x)(Y1) = X1 and so

λ(t)kXλ(t) = kuX

λ(t)kYλ(t) = kuY for some u ∈ Υn

λ(x)kXλ(x)−1 = kvY

λ(x)kYλ(x)−1 = kvX for some v ∈ Un where vn = 1



As such, conjugation by λ(t) yields

(ta0+1xb0 , ta1+1xb1 , . . . , tan−1+1xbn−1) = (ta0xb0 , tauxbu , . . . , ta(n−1)uxb(n−1)u)

(tc0+1xd0 , tc1+1xd1 , . . . , tcn−1+1xdn−1) = (tc0xd0 , tduxdu , . . . , tc(n−1)uxd(n−1)u)

And since (a0, b0) = (0, 0) then (a0 + 1, b0) = (1, 0) = (ar , br ) and
(c0 + 1, d0) = (cs , ds) which implies that

(ta0+1xb0 , ta1+1xb1 , . . . , tan−1+1xbn−1) = (tar xbr , tar+uxbr+u , . . . , tar+(n−1)uxbr+(n−1)u)

(tc0+1xd0 , tc1+1xd1 , . . . , tcn−1+1xdn−1) = (tcsxds , tds+uxds+u , . . . , tcs+(n−1)uxds+(n−1)u)

and so

be = br+eu

de = ds+eu

ae + 1 = ar+eu

ce + 1 = cs+eu

for each e ∈ Zn.



Similarly, conjugation by λ(x) yields

(ta0xb0+(−1)a0 , ta1xb1+(−1)a1 , . . . , tan−1xbn−1+(−1)an−1
) = (tc0xd0 , tcv xdv , . . . , tc(n−1)v xd(n−1)v )

(tc0xd0+(−1)c0 , tc1xd1+(−1)c1 , . . . , tcn−1xdn−1+(−1)cn−1
) = (ta0xb0 , tav xbv , . . . , ta(n−1)v xb(n−1)v )

Here, (a0, b0) = (0, 0) yields (a0, b0 + (−1)a0) = (0, 1) = (c0, d0) so the first
equation directly yields that

cev = ae

dev = be + (−1)ae

for each e ∈ Zn.



And since (cs , ds) = (1, 1) then (cs , ds + (−1)cs ) = (1, 0) = (ar , br ) which means that

(tc0xd0+(−1)c0 , tc1xd1+(−1)c1 , . . . , tcn−1xdn−1+(−1)cn−1
) = (ta0xb0 , ta1xb1 , . . . , ta(n−1)xb(n−1))v

= (tar xbr , tar+1xbr+1 , . . . , tar+(n−1)xbr+(n−1))v

↓

(tcsxds+(−1)cs , tcs+1xds+1+(−1)cs+1
, . . . , tcs+n−1xds+n−1+(−1)cs+n−1

) =

(tar xbr , tar+v xbr+v , . . . , tar+(n−1)v xbr+(n−1)v )

which yields

cs+e = ar+ev

ds+e + (−1)cs+e = br+ev



So a given

K = 〈kxkY 〉
= 〈(ta0xb0 , ta1xb1 , . . . , tan−1xbn−1)(tc0xd0 , tc1xd1 , . . . , tcn−1xdn−1)〉

being normalized by λ(G ) implies that the following system of equations
must be satisfied for each e ∈ Zn

ae + 1 = ar+eu be = br+eu

ce + 1 = cs+eu de = ds+eu

cev = ae dev = be + (−1)ae

cs+e = ar+ev br+ev = ds+e + (−1)cs+e

where ae , ce ∈ Z2, be ∈ {0, 2, . . . , n − 2}, de ∈ {1, 3, . . . , n − 1} and

(ao , b0) = (0, 0)

(ar , br ) = (1, 0)

(c0, d0) = (0, 1)

(cs , ds) = (1, 1)



Two immediate consequences:

Since be = br+eu then we must have br+eu = br+(r+eu)u = be
since the b’s must consist of two copies of every even integer
between 0 and n − 2.

As such (since u2 = 1) we have r(u + 1) = 0, and similarly
de = ds+eu implies that s(u + 1) = 0.

Additionally, the equations ae + 1 = ar+eu and ce + 1 = cs+eu

imply that r + eu 6= e and s + eu 6= e which means that
r 6∈ 〈1− u〉 and s 6∈ 〈1− u〉.



It turns out that, in fact, u = −1 so that r(u + 1) = 0 and
s(u + 1) = 0 automatically and r 6∈ 〈1− u〉 = 〈2〉 and
s 6∈ 〈1− u〉 = 〈2〉.
Furthermore, we must have that, in fact, v2 = 1. (i.e. v ∈ Υn)

And while r , s need not be units, they must satisfy
(s − rv)/2 ∈ Un/2 which yields δn possible kXkY where

δn = |{(v , r , s) ∈ Υn × Zn × Zn | ((s − rv)/2) ∈ Un/2 and s, r 6∈ 〈2〉}|

=
n

2
· |Υn| · φ(

n

2
)

=

{
n
2 · |Υn| · φ(n) 4 - n
n
2 · |Υn| · φ(n)

2 4|n

and so δn
φ(n) possible K which therefore enumerates the

N ∈ R(G , [G ]) where NormB(N) ≤W (X1,Y1).



For those N ∈ R(G , [G ]) where NormB(N) ≤W (X2,Y2) we can
utilize the following:

Lemma
The automorphism φ(1,1) ∈ Aut(Dn), where φ(xb) = xb and

φ(txb) = txb+1 has the property that φ(X1) = X2, φ(X2) = X1

and that φ(Y1) = Y2 and φ(Y2) = Y1, and also φ(X0) = Y0 and
φ(Y0) = X0.

And since φ(1,1)W (Xi ,Yi )φ
−1
(1,1) = W (φ(1,1)(Xi ), φ(1,1)(Yi )) and for

a given N ∈ R(G , [G ]) one has that NormB(N) is contained in
W (Xi ,Yi ) for exactly one {Xi ,Yi} we have the following:



Theorem
If R(G , [G ]; {Xi ,Yi}) is the set of those N ∈ R(G , [G ]) such that
NormB(N) ≤W (Xi ,Yi ) then
|R(G , [G ]; {X1,Y1})| = |R(G , [G ]; {X2,Y2})|.

In summary

|R(Dn, [Dn])| =


(n2 + 2)|Υn| if 8|n
(n2 + 1)|Υn| if 4|n but 8 - n
(n + 1)|Υn| if 2|n but 4 - n
|Υn| if n odd



Thank you!
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